This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/convolution_mod"
#include"../../../template/template.hpp"
#include"../../../Modulo_Polynomial/Numeric_Theory_Translation.hpp"
const ll Mod = 998244353;
using mint = modint<Mod>;
int main() {
int N, M; cin >> N >> M;
vector<mint> a(N), b(M);
for (int i = 0; i < N; i++) {
int x; scanf("%d", &x);
a[i] = mint(x);
}
for (int j = 0; j < M; j++) {
int y; scanf("%d", &y);
b[j] = mint(y);
}
vector<mint> c = Numeric_Theory_Translation<mint>().convolution(a, b);
cout << c << endl;
}
#line 1 "verify/yosupo_library_checker/polynomial/Convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/convolution_mod"
#line 2 "template/template.hpp"
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
#line 2 "template/utility.hpp"
using ll = long long;
// a ← max(a, b) を実行する. a が更新されたら, 返り値が true.
template<typename T, typename U>
inline bool chmax(T &a, const U b){
return (a < b ? a = b, 1: 0);
}
// a ← min(a, b) を実行する. a が更新されたら, 返り値が true.
template<typename T, typename U>
inline bool chmin(T &a, const U b){
return (a > b ? a = b, 1: 0);
}
#line 59 "template/template.hpp"
// math
#line 2 "template/math.hpp"
// 除算に関する関数
// floor(x / y) を求める.
template<typename T, typename U>
T div_floor(T x, U y){ return (x > 0 ? x / y: (x - y + 1) / y); }
// ceil(x / y) を求める.
template<typename T, typename U>
T div_ceil(T x, U y){ return (x > 0 ? (x + y - 1) / y: x / y) ;}
// x を y で割った余りを求める.
template<typename T, typename U>
T mod(T x, U y){
T q = div_floor(x, y);
return x - q * y ;
}
// x を y で割った商と余りを求める.
template<typename T, typename U>
pair<T, T> divmod(T x, U y){
T q = div_floor(x, y);
return {q, x - q * y};
}
// 四捨五入を求める.
template<typename T, typename U>
T round(T x, U y){
T q, r;
tie (q, r) = divmod(x, y);
return (r >= div_ceil(y, 2)) ? q + 1 : q;
}
// 指数に関する関数
// x の y 乗を求める.
ll intpow(ll x, ll y){
ll a = 1;
while (y){
if (y & 1) { a *= x; }
x *= x;
y >>= 1;
}
return a;
}
// x の y 乗を z で割った余りを求める.
ll modpow(ll x, ll y, ll z){
ll a = 1;
while (y){
if (y & 1) { (a *= x) %= z; }
(x *= x) %= z;
y >>= 1;
}
return a;
}
// x の y 乗を z で割った余りを求める.
template<typename T, typename U>
T modpow(T x, U y, T z) {
T a = 1;
while (y) {
if (y & 1) { (a *= x) %= z; }
(x *= x) %= z;
y >>= 1;
}
return a;
}
// vector の要素の総和を求める.
ll sum(vector<ll> &X){
ll y = 0;
for (auto &&x: X) { y+=x; }
return y;
}
// vector の要素の総和を求める.
template<typename T>
T sum(vector<T> &X){
T y = T(0);
for (auto &&x: X) { y += x; }
return y;
}
// a x + b y = gcd(a, b) を満たす整数の組 (a, b) に対して, (x, y, gcd(a, b)) を求める.
tuple<ll, ll, ll> Extended_Euclid(ll a, ll b) {
ll s = 1, t = 0, u = 0, v = 1;
while (b) {
ll q;
tie(q, a, b) = make_tuple(div_floor(a, b), b, mod(a, b));
tie(s, t) = make_pair(t, s - q * t);
tie(u, v) = make_pair(v, u - q * v);
}
return make_tuple(s, u, a);
}
// floor(sqrt(N)) を求める (N < 0 のときは, 0 とする).
ll isqrt(const ll &N) {
if (N <= 0) { return 0; }
ll x = sqrt(N);
while ((x + 1) * (x + 1) <= N) { x++; }
while (x * x > N) { x--; }
return x;
}
// floor(sqrt(N)) を求める (N < 0 のときは, 0 とする).
ll floor_sqrt(const ll &N) { return isqrt(N); }
// ceil(sqrt(N)) を求める (N < 0 のときは, 0 とする).
ll ceil_sqrt(const ll &N) {
ll x = isqrt(N);
return x * x == N ? x : x + 1;
}
#line 62 "template/template.hpp"
// inout
#line 1 "template/inout.hpp"
// 入出力
template<class... T>
void input(T&... a){ (cin >> ... >> a); }
void print(){ cout << "\n"; }
template<class T, class... Ts>
void print(const T& a, const Ts&... b){
cout << a;
(cout << ... << (cout << " ", b));
cout << "\n";
}
template<typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &P){
is >> P.first >> P.second;
return is;
}
template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &P){
os << P.first << " " << P.second;
return os;
}
template<typename T>
vector<T> vector_input(int N, int index){
vector<T> X(N+index);
for (int i=index; i<index+N; i++) cin >> X[i];
return X;
}
template<typename T>
istream &operator>>(istream &is, vector<T> &X){
for (auto &x: X) { is >> x; }
return is;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &X){
int s = (int)X.size();
for (int i = 0; i < s; i++) { os << (i ? " " : "") << X[i]; }
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const unordered_set<T> &S){
int i = 0;
for (T a: S) {os << (i ? " ": "") << a; i++;}
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const set<T> &S){
int i = 0;
for (T a: S) { os << (i ? " ": "") << a; i++; }
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const unordered_multiset<T> &S){
int i = 0;
for (T a: S) { os << (i ? " ": "") << a; i++; }
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const multiset<T> &S){
int i = 0;
for (T a: S) { os << (i ? " ": "") << a; i++; }
return os;
}
#line 65 "template/template.hpp"
// macro
#line 2 "template/macro.hpp"
// マクロの定義
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define unless(cond) if (!(cond))
#define until(cond) while (!(cond))
#define loop while (true)
// オーバーロードマクロ
#define overload2(_1, _2, name, ...) name
#define overload3(_1, _2, _3, name, ...) name
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload5(_1, _2, _3, _4, _5, name, ...) name
// 繰り返し系
#define rep1(n) for (ll i = 0; i < n; i++)
#define rep2(i, n) for (ll i = 0; i < n; i++)
#define rep3(i, a, b) for (ll i = a; i < b; i++)
#define rep4(i, a, b, c) for (ll i = a; i < b; i += c)
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define foreach1(x, a) for (auto &&x: a)
#define foreach2(x, y, a) for (auto &&[x, y]: a)
#define foreach3(x, y, z, a) for (auto &&[x, y, z]: a)
#define foreach4(x, y, z, w, a) for (auto &&[x, y, z, w]: a)
#define foreach(...) overload5(__VA_ARGS__, foreach4, foreach3, foreach2, foreach1)(__VA_ARGS__)
#line 68 "template/template.hpp"
// bitop
#line 2 "template/bitop.hpp"
// 非負整数 x の bit legnth を求める.
ll bit_length(ll x) {
if (x == 0) { return 0; }
return (sizeof(long) * CHAR_BIT) - __builtin_clzll(x);
}
// 非負整数 x の popcount を求める.
ll popcount(ll x) { return __builtin_popcountll(x); }
// 正の整数 x に対して, floor(log2(x)) を求める.
ll floor_log2(ll x) { return bit_length(x) - 1; }
// 正の整数 x に対して, ceil(log2(x)) を求める.
ll ceil_log2(ll x) { return bit_length(x - 1); }
// x の第 k ビットを取得する
int get_bit(ll x, int k) { return (x >> k) & 1; }
// x のビット列を取得する.
// k はビット列の長さとする.
vector<int> get_bits(ll x, int k) {
vector<int> bits(k);
rep(i, k) {
bits[i] = x & 1;
x >>= 1;
}
return bits;
}
// x のビット列を取得する.
vector<int> get_bits(ll x) { return get_bits(x, bit_length(x)); }
#line 2 "Modulo_Polynomial/Numeric_Theory_Translation.hpp"
#line 2 "Modulo_Polynomial/Modulo_Polynomial.hpp"
#line 2 "Algebra/modint.hpp"
#line 4 "Algebra/modint.hpp"
template<int M>
class modint {
public:
static constexpr int Mod = M;
int64_t x;
public:
// 初期化
constexpr modint(): x(0) {}
constexpr modint(int64_t a): x((a % Mod + Mod) % Mod) {}
// マイナス元
modint operator-() const { return modint(-x); }
// 加法
modint& operator+=(const modint &b){
if ((x += b.x) >= Mod) x -= Mod;
return *this;
}
friend modint operator+(const modint &x, const modint &y) { return modint(x) += y; }
// 減法
modint& operator-=(const modint &b){
if ((x += Mod - b.x) >= Mod) x -= Mod;
return *this;
}
friend modint operator-(const modint &x, const modint &y) { return modint(x) -= y; }
// 乗法
modint& operator*=(const modint &b){
(x *= b.x) %= Mod;
return *this;
}
friend modint operator*(const modint &x, const modint &y) { return modint(x) *= y; }
friend modint operator*(const int &x, const modint &y) { return modint(x) *= y; }
friend modint operator*(const ll &x, const modint &y) { return modint(x) *= y; }
// 除法
modint& operator/=(const modint &b){ return (*this) *= b.inverse(); }
friend modint operator/(const modint &x, const modint &y) { return modint(x) /= y; }
modint inverse() const {
int64_t s = 1, t = 0;
int64_t a = x, b = Mod;
while (b > 0) {
int64_t q = a / b;
a -= q * b; swap(a, b);
s -= q * t; swap(s, t);
}
assert (a == 1);
return modint(s);
}
// 比較
friend bool operator==(const modint &a, const modint &b) { return (a.x == b.x); }
friend bool operator==(const modint &a, const int &b) { return a.x == mod(b, Mod); }
friend bool operator!=(const modint &a, const modint &b) { return (a.x != b.x); }
// 入力
friend istream &operator>>(istream &is, modint &a) {
is >> a.x;
a.x = (a.x % Mod + Mod) % Mod;
return is;
}
// 出力
friend ostream &operator<<(ostream &os, const modint &a) { return os << a.x; }
bool is_zero() const { return x == 0; }
bool is_member(ll a) const { return x == (a % Mod + Mod) % Mod; }
};
template<int Mod>
modint<Mod> pow(modint<Mod> x, long long n) {
if (n < 0) { return pow(x, -n).inverse(); }
auto res = modint<Mod>(1);
for (; n; n >>= 1) {
if (n & 1) { res *= x; }
x *= x;
}
return res;
}
#line 5 "Modulo_Polynomial/Modulo_Polynomial.hpp"
template<typename mint>
class Modulo_Polynomial {
public:
int precision = 0;
public:
vector<mint> poly;
Modulo_Polynomial(vector<mint> _poly, int precision): precision(precision) {
if (_poly.size() > precision) { _poly.resize(precision); }
poly = _poly;
}
Modulo_Polynomial() = default;
Modulo_Polynomial(vector<mint> poly) : Modulo_Polynomial(poly, poly.size()) {}
Modulo_Polynomial(int precision) : Modulo_Polynomial({}, precision) {}
// 演算子の定義
public:
// マイナス元
Modulo_Polynomial operator-() const {
Modulo_Polynomial res(*this);
for (auto &a : res.poly) { a = -a; }
return res;
}
// 加法
Modulo_Polynomial& operator+=(const Modulo_Polynomial &P){
if (size() < P.size()) { resize(P.size()); }
for (int i = 0; i < (int) P.poly.size(); i++) { poly[i] += P[i]; }
reduce();
return *this;
}
Modulo_Polynomial& operator+=(const mint &a){
if (poly.empty()) { resize(1); }
poly[0] += a;
reduce();
return *this;
}
friend Modulo_Polynomial operator+(const Modulo_Polynomial &lhs, const Modulo_Polynomial &rhs) { return Modulo_Polynomial(lhs) += rhs; }
Modulo_Polynomial operator+(const mint &a) const { return Modulo_Polynomial(*this) += a; }
// 減法
Modulo_Polynomial& operator-=(const Modulo_Polynomial &P){
if (size() < P.size()) { resize(P.size()); }
for (int i = 0; i < (int) P.poly.size(); i++) { poly[i] -= P[i]; }
reduce();
return *this;
}
Modulo_Polynomial& operator-=(const mint &a){
if (poly.empty()) { resize(1); }
poly[0] -= a;
reduce();
return *this;
}
friend Modulo_Polynomial operator-(const Modulo_Polynomial &lhs, const Modulo_Polynomial &rhs) { return Modulo_Polynomial(lhs) -= rhs; }
Modulo_Polynomial operator-(const mint &a) const { return Modulo_Polynomial(*this) -= a; }
// スカラー倍
Modulo_Polynomial& operator*=(const mint &a){
for (int i = 0; i < size(); i++) { poly[i] *= a; }
reduce();
return *this;
}
Modulo_Polynomial operator*(const mint &a) const {return Modulo_Polynomial(*this) *= a;}
friend Modulo_Polynomial operator*(const mint &a, const Modulo_Polynomial &P) {
Modulo_Polynomial res(P);
res *= a;
return res;
}
// 積
Modulo_Polynomial& operator*=(const Modulo_Polynomial &P) {
int r = min({(int) (poly.size() + P.poly.size()) - 1, precision, P.precision});
vector<mint> A(r);
for (int i = 0; i < size(); i++) {
for (int j = 0; j < P.size(); j++) {
if (i + j < r) { A[i + j] += poly[i] * P.poly[j]; }
}
}
poly = A;
precision = min(precision, P.precision);
return *this;
}
friend Modulo_Polynomial operator*(const Modulo_Polynomial &lhs, const Modulo_Polynomial &rhs) { return Modulo_Polynomial(lhs) *= rhs; }
// スカラー除算
Modulo_Polynomial& operator/=(const mint &a) {
mint a_inv = a.inverse();
for (int i = 0; i < size(); i++) { poly[i] *= a_inv; }
return *this;
}
Modulo_Polynomial operator/(const mint &a) const { return Modulo_Polynomial(*this) /= a; }
// index
mint operator[] (int k) const { return (k < poly.size()) ? poly[k] : 0; }
// istream
friend istream &operator>>(istream &is, Modulo_Polynomial &P) {
P.poly.resize(P.precision);
for (int i = 0; i < (int)P.precision; i++) { is >> P.poly[i]; }
return (is);
}
// ostream
friend ostream &operator<<(ostream &os, const Modulo_Polynomial &P){
for (int i = 0; i < (int)P.poly.size(); i++){
os << (i ? " " : "") << P[i];
}
return os;
}
// poly で保持しているベクトルの長さを size にする.
// size = -1 のときは, size = precision に変換される.
void resize(int size = -1) {
if (size == -1) { size = this -> precision; }
size = min(size, this -> precision);
poly.resize(size);
}
bool is_zero() const {
for (auto &a: poly) { unless(a.is_zero()) {return false;} }
return true;
}
// 高次に連なる 0 を削除する
void reduce() {
while (!poly.empty() && poly.back().is_zero()) { poly.pop_back(); }
}
// 保持している多項式の乗法の項の長さを求める
int size() const { return poly.size(); }
// 次数を求める (ゼロ多項式の時は -1)
int degree() const {
for (int d = size() - 1; d >= 0; d--) {
unless(poly[d].is_zero()) { return d; }
}
return -1;
}
// 位数 (係数が非ゼロである次数の最小値)
int order() const {
for (int d = 0; d < size(); d++) {
unless(poly[d].is_zero()) { return d; }
}
return -1;
}
};
#line 5 "Modulo_Polynomial/Numeric_Theory_Translation.hpp"
template<typename F>
class Numeric_Theory_Translation {
public:
F primitive;
vector<F> root, iroot, rate2, irate2, rate3, irate3;
public:
Numeric_Theory_Translation() {
primitive = primitive_root();
build_up();
}
private:
F primitive_root(){
if (F::Mod == 2) { return F(1); }
if (F::Mod == 998244353) { return F(3); }
vector<int> fac;
int v = F::Mod - 1;
for (int q = 2; q * q <= v; q++){
int e = 0;
while (v % q == 0){
e++; v /= q;
}
if (e > 0) { fac.emplace_back(q); }
}
if (v > 1) { fac.emplace_back(v); }
F g(2);
while (true) {
bool flag = true;
for (int q: fac) {
if (pow(g, (F::Mod - 1) / q) == 1){
flag = false;
break;
}
}
if (flag) { break; }
g += 1;
}
return g;
}
void build_up() {
int x = ~(F::Mod - 1) & (F::Mod - 2);
int rank2 = bit_length(x);
root.resize(rank2 + 1); iroot.resize(rank2 + 1);
rate2.resize(max(0, rank2 - 1)); irate2.resize(max(0, rank2 - 1));
rate3.resize(max(0, rank2 - 2)); irate3.resize(max(0, rank2 - 2));
root.back() = pow(primitive, (F::Mod - 1) >> rank2);
iroot.back() = root.back().inverse();
for (int i = rank2 - 1; i >= 0; i--){
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
F prod(1), iprod(1);
for (int i = 0; i < rank2 - 1; i++){
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * prod;
prod *= iroot[i + 2]; iprod *= root[i + 2];
}
prod = 1; iprod = 1;
for (int i = 0; i < rank2 - 2; i++){
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3]; iprod *= root[i + 3];
}
}
public:
void ntt(vector<F> &A){
int N = A.size();
int h = ceil_log2(N);
F I = root[2];
for (int l = 0; l < h;){
if (h - l == 1){
int p = 1 << (h - l - 1);
F rot(1);
for (int s = 0; s < (1 << l); s++){
int offset = s << (h - l);
for(int i = 0; i < p; i++){
F x = A[i + offset], y = A[i + offset + p] * rot;
A[i + offset] = x + y;
A[i + offset + p] = x - y;
}
unless (s + 1 == (1 << l)){ rot *= rate2[bit_length(~s & -(~s)) - 1]; }
}
l++;
} else {
int p = 1 << (h - l - 2);
F rot(1);
for (int s = 0; s < (1 << l); s++){
F rot2 = rot * rot, rot3 = rot2 * rot;
int offset = s << (h - l);
for (int i = 0; i < p; i++){
F a0 = A[i + offset];
F a1 = A[i + offset + p] * rot;
F a2 = A[i + offset + 2 * p] * rot2;
F a3 = A[i + offset + 3 * p] * rot3;
F alpha = (a1 - a3) * I;
A[i + offset] = a0 + a2 + a1 + a3;
A[i + offset + p] = a0 + a2 - a1 - a3;
A[i + offset + 2 * p] = a0 - a2 + alpha;
A[i + offset + 3 * p] = a0 - a2 - alpha;
}
unless(s + 1 == 1 << l) { rot *= rate3[bit_length(~s & -(~s)) - 1]; }
}
l += 2;
}
}
}
public:
void inverse_ntt(vector<F> &A){
int N = A.size();
int h = ceil_log2(N);
F J = iroot[2];
for (int l = h; l > 0;){
if (l == 1){
int p = 1 << (h - l);
F irot(1);
for (int s = 0; s < (1 << (l - 1)); s++){
int offset = s << (h - l + 1);
for(int i = 0; i < p; i++){
F x = A[i + offset], y = A[i + offset + p];
A[i + offset] = x + y;
A[i + offset + p] = (x - y) * irot;
}
unless (s+1 == 1 << (l - 1) ) { irot *= irate2[bit_length(~s & -(~s)) -1]; }
}
l--;
} else {
int p = 1 << (h - l);
F irot(1);
for (int s=0; s<(1<<(l-2)); s++){
F irot2 = irot * irot, irot3 = irot2 *irot;
int offset=s<<(h-l+2);
for (int i = 0; i < p; i++){
F a0 = A[i + offset];
F a1 = A[i + offset + p];
F a2 = A[i + offset + 2 * p];
F a3 = A[i + offset + 3 * p];
F beta = (a2 - a3) * J;
A[i + offset] = a0 + a2 + a1 + a3;
A[i + offset + p] = (a0 - a1 + beta) * irot;
A[i + offset + 2 * p] = (a0 + a1 - a2 - a3) * irot2;
A[i + offset + 3 * p] = (a0 - a1 - beta) * irot3;
}
unless (s + 1 == 1 << (l - 2)) { irot *= irate3[bit_length(~s & -(~s)) - 1]; }
}
l-=2;
}
}
F N_inv=F(N).inverse();
for (int i=0; i<N; i++) A[i]*=N_inv;
}
vector<F> convolution(vector<F> A, vector<F> B){
if (A.empty() || B.empty()) return vector<F>{};
int M=A.size(), N=B.size(), L=M+N-1;
if (min(M,N)<64){
vector<F> C(L);
for(int i=0; i<M; i++){
for (int j=0; j<N; j++){
C[i+j]+=A[i]*B[j];
}
}
return C;
}
int h=bit_length(L);
int K=1<<h;
vector<F> X(K), Y(K);
copy(A.begin(), A.end(), X.begin());
copy(B.begin(), B.end(), Y.begin());
ntt(X); ntt(Y);
for (int i=0; i<K; i++) X[i]*=Y[i];
inverse_ntt(X); X.resize(L);
return X;
}
vector<F> inverse(vector<F> P, int d) {
int n = P.size();
assert(!P.empty() && !P[0].is_zero());
vector<F> G{P[0].inverse()};
while (G.size() < d) {
int m = G.size();
vector<F> A(P.begin(), P.begin() + min(n, 2 * m));
A.resize(2 * m);
vector<F> B(G);
B.resize(2 * m);
ntt(A); ntt(B);
for (int i = 0; i < 2 * m; i++) { A[i] *= B[i]; }
inverse_ntt(A);
A.erase(A.begin(), A.begin() + m);
A.resize(2 * m);
ntt(A);
for (int i = 0; i < 2 * m; i++) { A[i] *= -B[i]; }
inverse_ntt(A);
G.insert(G.end(), A.begin(), A.begin() + m);
}
G.resize(d);
return G;
}
vector<F> inverse(vector<F> P) { return inverse(P, P.size()); }
vector<F> multiple_convolution(vector<vector<F>> A) {
if (A.empty()) { return {1}; }
deque<int> queue(A.size());
iota(queue.begin(), queue.end(), 0);
while (queue.size() > 1) {
int i = queue.front(); queue.pop_front();
int j = queue.front(); queue.pop_front();
A[i] = convolution(A[i], A[j]);
queue.emplace_back(i);
}
return A[queue.back()];
}
};
#line 5 "verify/yosupo_library_checker/polynomial/Convolution.test.cpp"
const ll Mod = 998244353;
using mint = modint<Mod>;
int main() {
int N, M; cin >> N >> M;
vector<mint> a(N), b(M);
for (int i = 0; i < N; i++) {
int x; scanf("%d", &x);
a[i] = mint(x);
}
for (int j = 0; j < M; j++) {
int y; scanf("%d", &y);
b[j] = mint(y);
}
vector<mint> c = Numeric_Theory_Translation<mint>().convolution(a, b);
cout << c << endl;
}