This documentation is automatically generated by online-judge-tools/verification-helper
#include "Algebra/modint.hpp"
#pragma once
#include"../template/template.hpp"
template<int M>
class modint {
public:
static constexpr int Mod = M;
int64_t x;
public:
// 初期化
constexpr modint(): x(0) {}
constexpr modint(int64_t a): x((a % Mod + Mod) % Mod) {}
// マイナス元
modint operator-() const { return modint(-x); }
// 加法
modint& operator+=(const modint &b){
if ((x += b.x) >= Mod) x -= Mod;
return *this;
}
friend modint operator+(const modint &x, const modint &y) { return modint(x) += y; }
// 減法
modint& operator-=(const modint &b){
if ((x += Mod - b.x) >= Mod) x -= Mod;
return *this;
}
friend modint operator-(const modint &x, const modint &y) { return modint(x) -= y; }
// 乗法
modint& operator*=(const modint &b){
(x *= b.x) %= Mod;
return *this;
}
friend modint operator*(const modint &x, const modint &y) { return modint(x) *= y; }
friend modint operator*(const int &x, const modint &y) { return modint(x) *= y; }
friend modint operator*(const ll &x, const modint &y) { return modint(x) *= y; }
// 除法
modint& operator/=(const modint &b){ return (*this) *= b.inverse(); }
friend modint operator/(const modint &x, const modint &y) { return modint(x) /= y; }
modint inverse() const {
int64_t s = 1, t = 0;
int64_t a = x, b = Mod;
while (b > 0) {
int64_t q = a / b;
a -= q * b; swap(a, b);
s -= q * t; swap(s, t);
}
assert (a == 1);
return modint(s);
}
// 比較
friend bool operator==(const modint &a, const modint &b) { return (a.x == b.x); }
friend bool operator==(const modint &a, const int &b) { return a.x == mod(b, Mod); }
friend bool operator!=(const modint &a, const modint &b) { return (a.x != b.x); }
// 入力
friend istream &operator>>(istream &is, modint &a) {
is >> a.x;
a.x = (a.x % Mod + Mod) % Mod;
return is;
}
// 出力
friend ostream &operator<<(ostream &os, const modint &a) { return os << a.x; }
bool is_zero() const { return x == 0; }
bool is_member(ll a) const { return x == (a % Mod + Mod) % Mod; }
};
template<int Mod>
modint<Mod> pow(modint<Mod> x, long long n) {
if (n < 0) { return pow(x, -n).inverse(); }
auto res = modint<Mod>(1);
for (; n; n >>= 1) {
if (n & 1) { res *= x; }
x *= x;
}
return res;
}
#line 2 "Algebra/modint.hpp"
#line 2 "template/template.hpp"
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
#line 2 "template/utility.hpp"
using ll = long long;
// a ← max(a, b) を実行する. a が更新されたら, 返り値が true.
template<typename T, typename U>
inline bool chmax(T &a, const U b){
return (a < b ? a = b, 1: 0);
}
// a ← min(a, b) を実行する. a が更新されたら, 返り値が true.
template<typename T, typename U>
inline bool chmin(T &a, const U b){
return (a > b ? a = b, 1: 0);
}
#line 59 "template/template.hpp"
// math
#line 2 "template/math.hpp"
// 除算に関する関数
// floor(x / y) を求める.
template<typename T, typename U>
T div_floor(T x, U y){ return (x > 0 ? x / y: (x - y + 1) / y); }
// ceil(x / y) を求める.
template<typename T, typename U>
T div_ceil(T x, U y){ return (x > 0 ? (x + y - 1) / y: x / y) ;}
// x を y で割った余りを求める.
template<typename T, typename U>
T mod(T x, U y){
T q = div_floor(x, y);
return x - q * y ;
}
// x を y で割った商と余りを求める.
template<typename T, typename U>
pair<T, T> divmod(T x, U y){
T q = div_floor(x, y);
return {q, x - q * y};
}
// 四捨五入を求める.
template<typename T, typename U>
T round(T x, U y){
T q, r;
tie (q, r) = divmod(x, y);
return (r >= div_ceil(y, 2)) ? q + 1 : q;
}
// 指数に関する関数
// x の y 乗を求める.
ll intpow(ll x, ll y){
ll a = 1;
while (y){
if (y & 1) { a *= x; }
x *= x;
y >>= 1;
}
return a;
}
// x の y 乗を z で割った余りを求める.
ll modpow(ll x, ll y, ll z){
ll a = 1;
while (y){
if (y & 1) { (a *= x) %= z; }
(x *= x) %= z;
y >>= 1;
}
return a;
}
// x の y 乗を z で割った余りを求める.
template<typename T, typename U>
T modpow(T x, U y, T z) {
T a = 1;
while (y) {
if (y & 1) { (a *= x) %= z; }
(x *= x) %= z;
y >>= 1;
}
return a;
}
// vector の要素の総和を求める.
ll sum(vector<ll> &X){
ll y = 0;
for (auto &&x: X) { y+=x; }
return y;
}
// vector の要素の総和を求める.
template<typename T>
T sum(vector<T> &X){
T y = T(0);
for (auto &&x: X) { y += x; }
return y;
}
// a x + b y = gcd(a, b) を満たす整数の組 (a, b) に対して, (x, y, gcd(a, b)) を求める.
tuple<ll, ll, ll> Extended_Euclid(ll a, ll b) {
ll s = 1, t = 0, u = 0, v = 1;
while (b) {
ll q;
tie(q, a, b) = make_tuple(div_floor(a, b), b, mod(a, b));
tie(s, t) = make_pair(t, s - q * t);
tie(u, v) = make_pair(v, u - q * v);
}
return make_tuple(s, u, a);
}
// floor(sqrt(N)) を求める (N < 0 のときは, 0 とする).
ll isqrt(const ll &N) {
if (N <= 0) { return 0; }
ll x = sqrt(N);
while ((x + 1) * (x + 1) <= N) { x++; }
while (x * x > N) { x--; }
return x;
}
// floor(sqrt(N)) を求める (N < 0 のときは, 0 とする).
ll floor_sqrt(const ll &N) { return isqrt(N); }
// ceil(sqrt(N)) を求める (N < 0 のときは, 0 とする).
ll ceil_sqrt(const ll &N) {
ll x = isqrt(N);
return x * x == N ? x : x + 1;
}
#line 62 "template/template.hpp"
// inout
#line 1 "template/inout.hpp"
// 入出力
template<class... T>
void input(T&... a){ (cin >> ... >> a); }
void print(){ cout << "\n"; }
template<class T, class... Ts>
void print(const T& a, const Ts&... b){
cout << a;
(cout << ... << (cout << " ", b));
cout << "\n";
}
template<typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &P){
is >> P.first >> P.second;
return is;
}
template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &P){
os << P.first << " " << P.second;
return os;
}
template<typename T>
vector<T> vector_input(int N, int index){
vector<T> X(N+index);
for (int i=index; i<index+N; i++) cin >> X[i];
return X;
}
template<typename T>
istream &operator>>(istream &is, vector<T> &X){
for (auto &x: X) { is >> x; }
return is;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &X){
int s = (int)X.size();
for (int i = 0; i < s; i++) { os << (i ? " " : "") << X[i]; }
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const unordered_set<T> &S){
int i = 0;
for (T a: S) {os << (i ? " ": "") << a; i++;}
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const set<T> &S){
int i = 0;
for (T a: S) { os << (i ? " ": "") << a; i++; }
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const unordered_multiset<T> &S){
int i = 0;
for (T a: S) { os << (i ? " ": "") << a; i++; }
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const multiset<T> &S){
int i = 0;
for (T a: S) { os << (i ? " ": "") << a; i++; }
return os;
}
#line 65 "template/template.hpp"
// macro
#line 2 "template/macro.hpp"
// マクロの定義
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define unless(cond) if (!(cond))
#define until(cond) while (!(cond))
#define loop while (true)
// オーバーロードマクロ
#define overload2(_1, _2, name, ...) name
#define overload3(_1, _2, _3, name, ...) name
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload5(_1, _2, _3, _4, _5, name, ...) name
// 繰り返し系
#define rep1(n) for (ll i = 0; i < n; i++)
#define rep2(i, n) for (ll i = 0; i < n; i++)
#define rep3(i, a, b) for (ll i = a; i < b; i++)
#define rep4(i, a, b, c) for (ll i = a; i < b; i += c)
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define foreach1(x, a) for (auto &&x: a)
#define foreach2(x, y, a) for (auto &&[x, y]: a)
#define foreach3(x, y, z, a) for (auto &&[x, y, z]: a)
#define foreach4(x, y, z, w, a) for (auto &&[x, y, z, w]: a)
#define foreach(...) overload5(__VA_ARGS__, foreach4, foreach3, foreach2, foreach1)(__VA_ARGS__)
#line 68 "template/template.hpp"
// bitop
#line 2 "template/bitop.hpp"
// 非負整数 x の bit legnth を求める.
ll bit_length(ll x) {
if (x == 0) { return 0; }
return (sizeof(long) * CHAR_BIT) - __builtin_clzll(x);
}
// 非負整数 x の popcount を求める.
ll popcount(ll x) { return __builtin_popcountll(x); }
// 正の整数 x に対して, floor(log2(x)) を求める.
ll floor_log2(ll x) { return bit_length(x) - 1; }
// 正の整数 x に対して, ceil(log2(x)) を求める.
ll ceil_log2(ll x) { return bit_length(x - 1); }
// x の第 k ビットを取得する
int get_bit(ll x, int k) { return (x >> k) & 1; }
// x のビット列を取得する.
// k はビット列の長さとする.
vector<int> get_bits(ll x, int k) {
vector<int> bits(k);
rep(i, k) {
bits[i] = x & 1;
x >>= 1;
}
return bits;
}
// x のビット列を取得する.
vector<int> get_bits(ll x) { return get_bits(x, bit_length(x)); }
#line 4 "Algebra/modint.hpp"
template<int M>
class modint {
public:
static constexpr int Mod = M;
int64_t x;
public:
// 初期化
constexpr modint(): x(0) {}
constexpr modint(int64_t a): x((a % Mod + Mod) % Mod) {}
// マイナス元
modint operator-() const { return modint(-x); }
// 加法
modint& operator+=(const modint &b){
if ((x += b.x) >= Mod) x -= Mod;
return *this;
}
friend modint operator+(const modint &x, const modint &y) { return modint(x) += y; }
// 減法
modint& operator-=(const modint &b){
if ((x += Mod - b.x) >= Mod) x -= Mod;
return *this;
}
friend modint operator-(const modint &x, const modint &y) { return modint(x) -= y; }
// 乗法
modint& operator*=(const modint &b){
(x *= b.x) %= Mod;
return *this;
}
friend modint operator*(const modint &x, const modint &y) { return modint(x) *= y; }
friend modint operator*(const int &x, const modint &y) { return modint(x) *= y; }
friend modint operator*(const ll &x, const modint &y) { return modint(x) *= y; }
// 除法
modint& operator/=(const modint &b){ return (*this) *= b.inverse(); }
friend modint operator/(const modint &x, const modint &y) { return modint(x) /= y; }
modint inverse() const {
int64_t s = 1, t = 0;
int64_t a = x, b = Mod;
while (b > 0) {
int64_t q = a / b;
a -= q * b; swap(a, b);
s -= q * t; swap(s, t);
}
assert (a == 1);
return modint(s);
}
// 比較
friend bool operator==(const modint &a, const modint &b) { return (a.x == b.x); }
friend bool operator==(const modint &a, const int &b) { return a.x == mod(b, Mod); }
friend bool operator!=(const modint &a, const modint &b) { return (a.x != b.x); }
// 入力
friend istream &operator>>(istream &is, modint &a) {
is >> a.x;
a.x = (a.x % Mod + Mod) % Mod;
return is;
}
// 出力
friend ostream &operator<<(ostream &os, const modint &a) { return os << a.x; }
bool is_zero() const { return x == 0; }
bool is_member(ll a) const { return x == (a % Mod + Mod) % Mod; }
};
template<int Mod>
modint<Mod> pow(modint<Mod> x, long long n) {
if (n < 0) { return pow(x, -n).inverse(); }
auto res = modint<Mod>(1);
for (; n; n >>= 1) {
if (n & 1) { res *= x; }
x *= x;
}
return res;
}