This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/pow_of_matrix"
#include"../../../template/template.hpp"
#include"../../../Algebra/modint.hpp"
#include"../../../Linear_Algebra/Field_Matrix.hpp"
int main(){
int N; cin >> N;
ll K; cin >> K;
Field_Matrix<modint<998244353>> A(N);
cin >> A;
cout << power(A, K) << endl;
}
#line 1 "verify/yosupo_library_checker/linear_algebra/Power_Matrix.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/pow_of_matrix"
#line 2 "template/template.hpp"
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
#line 2 "template/utility.hpp"
using ll = long long;
// a ← max(a, b) を実行する. a が更新されたら, 返り値が true.
template<typename T, typename U>
inline bool chmax(T &a, const U b){
return (a < b ? a = b, 1: 0);
}
// a ← min(a, b) を実行する. a が更新されたら, 返り値が true.
template<typename T, typename U>
inline bool chmin(T &a, const U b){
return (a > b ? a = b, 1: 0);
}
#line 59 "template/template.hpp"
// math
#line 2 "template/math.hpp"
// 除算に関する関数
// floor(x / y) を求める.
template<typename T, typename U>
T div_floor(T x, U y){ return (x > 0 ? x / y: (x - y + 1) / y); }
// ceil(x / y) を求める.
template<typename T, typename U>
T div_ceil(T x, U y){ return (x > 0 ? (x + y - 1) / y: x / y) ;}
// x を y で割った余りを求める.
template<typename T, typename U>
T mod(T x, U y){
T q = div_floor(x, y);
return x - q * y ;
}
// x を y で割った商と余りを求める.
template<typename T, typename U>
pair<T, T> divmod(T x, U y){
T q = div_floor(x, y);
return {q, x - q * y};
}
// 四捨五入を求める.
template<typename T, typename U>
T round(T x, U y){
T q, r;
tie (q, r) = divmod(x, y);
return (r >= div_ceil(y, 2)) ? q + 1 : q;
}
// 指数に関する関数
// x の y 乗を求める.
ll intpow(ll x, ll y){
ll a = 1;
while (y){
if (y & 1) { a *= x; }
x *= x;
y >>= 1;
}
return a;
}
// x の y 乗を z で割った余りを求める.
ll modpow(ll x, ll y, ll z){
ll a = 1;
while (y){
if (y & 1) { (a *= x) %= z; }
(x *= x) %= z;
y >>= 1;
}
return a;
}
// x の y 乗を z で割った余りを求める.
template<typename T, typename U>
T modpow(T x, U y, T z) {
T a = 1;
while (y) {
if (y & 1) { (a *= x) %= z; }
(x *= x) %= z;
y >>= 1;
}
return a;
}
// vector の要素の総和を求める.
ll sum(vector<ll> &X){
ll y = 0;
for (auto &&x: X) { y+=x; }
return y;
}
// vector の要素の総和を求める.
template<typename T>
T sum(vector<T> &X){
T y = T(0);
for (auto &&x: X) { y += x; }
return y;
}
// a x + b y = gcd(a, b) を満たす整数の組 (a, b) に対して, (x, y, gcd(a, b)) を求める.
tuple<ll, ll, ll> Extended_Euclid(ll a, ll b) {
ll s = 1, t = 0, u = 0, v = 1;
while (b) {
ll q;
tie(q, a, b) = make_tuple(div_floor(a, b), b, mod(a, b));
tie(s, t) = make_pair(t, s - q * t);
tie(u, v) = make_pair(v, u - q * v);
}
return make_tuple(s, u, a);
}
// floor(sqrt(N)) を求める (N < 0 のときは, 0 とする).
ll isqrt(const ll &N) {
if (N <= 0) { return 0; }
ll x = sqrt(N);
while ((x + 1) * (x + 1) <= N) { x++; }
while (x * x > N) { x--; }
return x;
}
// floor(sqrt(N)) を求める (N < 0 のときは, 0 とする).
ll floor_sqrt(const ll &N) { return isqrt(N); }
// ceil(sqrt(N)) を求める (N < 0 のときは, 0 とする).
ll ceil_sqrt(const ll &N) {
ll x = isqrt(N);
return x * x == N ? x : x + 1;
}
#line 62 "template/template.hpp"
// inout
#line 1 "template/inout.hpp"
// 入出力
template<class... T>
void input(T&... a){ (cin >> ... >> a); }
void print(){ cout << "\n"; }
template<class T, class... Ts>
void print(const T& a, const Ts&... b){
cout << a;
(cout << ... << (cout << " ", b));
cout << "\n";
}
template<typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &P){
is >> P.first >> P.second;
return is;
}
template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &P){
os << P.first << " " << P.second;
return os;
}
template<typename T>
vector<T> vector_input(int N, int index){
vector<T> X(N+index);
for (int i=index; i<index+N; i++) cin >> X[i];
return X;
}
template<typename T>
istream &operator>>(istream &is, vector<T> &X){
for (auto &x: X) { is >> x; }
return is;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &X){
int s = (int)X.size();
for (int i = 0; i < s; i++) { os << (i ? " " : "") << X[i]; }
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const unordered_set<T> &S){
int i = 0;
for (T a: S) {os << (i ? " ": "") << a; i++;}
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const set<T> &S){
int i = 0;
for (T a: S) { os << (i ? " ": "") << a; i++; }
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const unordered_multiset<T> &S){
int i = 0;
for (T a: S) { os << (i ? " ": "") << a; i++; }
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const multiset<T> &S){
int i = 0;
for (T a: S) { os << (i ? " ": "") << a; i++; }
return os;
}
#line 65 "template/template.hpp"
// macro
#line 2 "template/macro.hpp"
// マクロの定義
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define unless(cond) if (!(cond))
#define until(cond) while (!(cond))
#define loop while (true)
// オーバーロードマクロ
#define overload2(_1, _2, name, ...) name
#define overload3(_1, _2, _3, name, ...) name
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload5(_1, _2, _3, _4, _5, name, ...) name
// 繰り返し系
#define rep1(n) for (ll i = 0; i < n; i++)
#define rep2(i, n) for (ll i = 0; i < n; i++)
#define rep3(i, a, b) for (ll i = a; i < b; i++)
#define rep4(i, a, b, c) for (ll i = a; i < b; i += c)
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define foreach1(x, a) for (auto &&x: a)
#define foreach2(x, y, a) for (auto &&[x, y]: a)
#define foreach3(x, y, z, a) for (auto &&[x, y, z]: a)
#define foreach4(x, y, z, w, a) for (auto &&[x, y, z, w]: a)
#define foreach(...) overload5(__VA_ARGS__, foreach4, foreach3, foreach2, foreach1)(__VA_ARGS__)
#line 68 "template/template.hpp"
// bitop
#line 2 "template/bitop.hpp"
// 非負整数 x の bit legnth を求める.
ll bit_length(ll x) {
if (x == 0) { return 0; }
return (sizeof(long) * CHAR_BIT) - __builtin_clzll(x);
}
// 非負整数 x の popcount を求める.
ll popcount(ll x) { return __builtin_popcountll(x); }
// 正の整数 x に対して, floor(log2(x)) を求める.
ll floor_log2(ll x) { return bit_length(x) - 1; }
// 正の整数 x に対して, ceil(log2(x)) を求める.
ll ceil_log2(ll x) { return bit_length(x - 1); }
// x の第 k ビットを取得する
int get_bit(ll x, int k) { return (x >> k) & 1; }
// x のビット列を取得する.
// k はビット列の長さとする.
vector<int> get_bits(ll x, int k) {
vector<int> bits(k);
rep(i, k) {
bits[i] = x & 1;
x >>= 1;
}
return bits;
}
// x のビット列を取得する.
vector<int> get_bits(ll x) { return get_bits(x, bit_length(x)); }
#line 2 "Algebra/modint.hpp"
#line 4 "Algebra/modint.hpp"
template<int M>
class modint {
public:
static constexpr int Mod = M;
int64_t x;
public:
// 初期化
constexpr modint(): x(0) {}
constexpr modint(int64_t a): x((a % Mod + Mod) % Mod) {}
// マイナス元
modint operator-() const { return modint(-x); }
// 加法
modint& operator+=(const modint &b){
if ((x += b.x) >= Mod) x -= Mod;
return *this;
}
friend modint operator+(const modint &x, const modint &y) { return modint(x) += y; }
// 減法
modint& operator-=(const modint &b){
if ((x += Mod - b.x) >= Mod) x -= Mod;
return *this;
}
friend modint operator-(const modint &x, const modint &y) { return modint(x) -= y; }
// 乗法
modint& operator*=(const modint &b){
(x *= b.x) %= Mod;
return *this;
}
friend modint operator*(const modint &x, const modint &y) { return modint(x) *= y; }
friend modint operator*(const int &x, const modint &y) { return modint(x) *= y; }
friend modint operator*(const ll &x, const modint &y) { return modint(x) *= y; }
// 除法
modint& operator/=(const modint &b){ return (*this) *= b.inverse(); }
friend modint operator/(const modint &x, const modint &y) { return modint(x) /= y; }
modint inverse() const {
int64_t s = 1, t = 0;
int64_t a = x, b = Mod;
while (b > 0) {
int64_t q = a / b;
a -= q * b; swap(a, b);
s -= q * t; swap(s, t);
}
assert (a == 1);
return modint(s);
}
// 比較
friend bool operator==(const modint &a, const modint &b) { return (a.x == b.x); }
friend bool operator==(const modint &a, const int &b) { return a.x == mod(b, Mod); }
friend bool operator!=(const modint &a, const modint &b) { return (a.x != b.x); }
// 入力
friend istream &operator>>(istream &is, modint &a) {
is >> a.x;
a.x = (a.x % Mod + Mod) % Mod;
return is;
}
// 出力
friend ostream &operator<<(ostream &os, const modint &a) { return os << a.x; }
bool is_zero() const { return x == 0; }
bool is_member(ll a) const { return x == (a % Mod + Mod) % Mod; }
};
template<int Mod>
modint<Mod> pow(modint<Mod> x, long long n) {
if (n < 0) { return pow(x, -n).inverse(); }
auto res = modint<Mod>(1);
for (; n; n >>= 1) {
if (n & 1) { res *= x; }
x *= x;
}
return res;
}
#line 2 "Linear_Algebra/Field_Matrix.hpp"
#line 4 "Linear_Algebra/Field_Matrix.hpp"
class SingularMatrixError: private exception{
const char* what() const throw() {
return "非正則行列に関する操作を行いました.";
}
};
template<typename F>
class Field_Matrix{
public:
vector<vector<F>> mat;
int row, col;
public:
Field_Matrix(int row, int col): row(row), col(col){
mat.assign(row, vector<F>(col, F()));
}
Field_Matrix(int row): Field_Matrix(row, row){}
Field_Matrix(vector<vector<F>> &ele): Field_Matrix(ele.size(), ele[0].size()){
for (int i = 0; i < row; i++){
copy(ele[i].begin(), ele[i].end(), mat[i].begin());
}
}
static Field_Matrix Zero_Matrix(int row, int col) { return Field_Matrix(row, col); }
static Field_Matrix Identity_Matrix(int size) {
Field_Matrix A(size);
for (int i = 0; i < size; i++) { A[i][i] = 1; }
return A;
}
// サイズ
pair<int, int> size() { return make_pair(row, col); }
// 正方行列?
bool is_square() const { return row == col; }
// 要素
inline const vector<F> &operator[](int i) const { return mat[i]; }
inline vector<F> &operator[](int i) { return mat[i]; }
// 比較
bool operator==(const Field_Matrix &B) const {
if (row != B.row || col != B.col){ return false; }
for (int i = 0; i < row; i++){
for (int j = 0; j < col; j++){
if ((*this)[i] != B[i]) return false;
}
}
return true;
}
bool operator!=(const Field_Matrix &B) const { return !((*this) == B); }
// マイナス元
Field_Matrix operator-() const {
Field_Matrix A(row, col);
for (int i = 0; i < row; i++){
for (int j = 0; j < col; j++) A[i][j] = -(*this)[i][j];
}
return A;
}
// 加法
Field_Matrix& operator+=(const Field_Matrix &B){
assert (row == B.row && col == B.col);
for (int i = 0; i < row; i++){
for (int j = 0; j < col; j++){
(*this)[i][j] += B[i][j];
}
}
return *this;
}
Field_Matrix operator+(const Field_Matrix &B) const { return Field_Matrix(*this) += B; }
// 減法
Field_Matrix& operator-=(const Field_Matrix &B){
assert (row == B.row && col == B.col);
for (int i = 0; i < row; i++){
for (int j = 0; j < col; j++){
(*this)[i][j] -= B[i][j];
}
}
return *this;
}
Field_Matrix operator-(const Field_Matrix &B) const {return Field_Matrix(*this) -= B; }
// 乗法
Field_Matrix& operator*=(const Field_Matrix &B){
assert (col == B.row);
vector<vector<F>> C(row, vector<F>(B.col, F()));
for (int i = 0; i < row; i++){
for (int k = 0; k < col; k++){
for (int j = 0; j < B.col; j++){
C[i][j] += (*this)[i][k] * B[k][j];
}
}
}
mat.swap(C); col = B.col;
return *this;
}
Field_Matrix operator*(const Field_Matrix &B) const { return Field_Matrix(*this)*=B; }
// スカラー倍
friend Field_Matrix operator*(const F &scaler, const Field_Matrix &rhs){
Field_Matrix res(rhs);
for (int i = 0; i < rhs.row; i++){
for (int j = 0; j < rhs.col; j++) { res[i][j] *= scaler; }
}
return res;
}
// 逆行列
Field_Matrix inverse(){
assert (is_square());
int N = col;
Field_Matrix A(*this), B(N,N);
for (int i = 0; i < N; i++) B[i][i] = F(1);
for (int j = 0; j < N; j++){
if (A[j][j] == 0){
int i = j + 1;
for (; i < N; i++){
if (A[i][j] != 0) break;
}
if (i == N) { throw SingularMatrixError(); }
swap(A[i], A[j]); swap(B[i], B[j]);
}
F a_inv = A[j][j].inverse();
for (int k = 0; k < N; k++){
A[j][k] *= a_inv;
B[j][k] *= a_inv;
}
for (int i = 0; i < N; i++){
if (i == j) { continue; }
F c = A[i][j];
for (int k = 0; k < N; k++){
A[i][k] -= A[j][k] * c;
B[i][k] -= B[j][k] * c;
}
}
}
return B;
}
bool is_regular(){
assert (is_square());
int N = row;
vector<vector<F>> A(N, vector<F>(N));
for (int i = 0; i < N; i++){
copy(mat[i].begin(), mat[i].end(), A[i].begin());
}
for (int j = 0; j < N; j++){
if (A[j][j] == 0){
int i = j + 1;
for (; i < N; i++){
if (A[i][j] != 0) break;
}
if (i == N) return false;
swap(A[i], A[j]);
}
F a_inv = A[j][j].inverse();
for (int i = j + 1; i < N; i++){
F c = -a_inv * A[i][j];
for (int k = 0; k < N; k++){ A[i][k] += c * A[j][k]; }
}
}
return true;
}
// 転置
Field_Matrix transpose(){
Field_Matrix B(col, row);
for (int i = 0; i < col; i++){
for (int j = 0; j < row; j++) B[i][j] = (*this)[j][i];
}
return B;
}
//
bool is_valid(){return (row > 0) && (col > 0);}
// 入力
friend istream &operator>>(istream &is, Field_Matrix &A) {
for (int i = 0; i < A.row; i++){
for (int j = 0; j < A.col; j++){
cin >> A[i][j];
}
}
return is;
}
// 出力
friend ostream &operator<<(ostream &os, const Field_Matrix &A){
for (int i = 0; i < A.row; i++){
for (int j = 0; j < A.col; j++){
cout << (j ? " ": "") << A[i][j];
}
if (i < A.row - 1) cout << "\n";
}
return os;
}
};
template<typename F>
Field_Matrix<F> power(Field_Matrix<F> A, int64_t n){
assert (A.is_square());
if (n == 0) { return Field_Matrix<F>::Identity_Matrix(A.row); }
if (n < 0) { return power(A.inverse(), -n); }
if (n % 2 == 0){
Field_Matrix<F> B = power(A, n / 2);
return B * B;
} else {
Field_Matrix<F> B = power(A, (n - 1) / 2);
return A * B * B;
}
}
// 行列 A の行列式を求める
template<typename F>
F Determinant(const Field_Matrix<F> &A){
assert (A.is_square());
int n = A.row;
F det(1);
Field_Matrix<F> B(A);
for (int j = 0; j < n; j ++){
if (B[j][j] == 0){
int i = j + 1;
for (; i < n; i++) {
if (B[i][j] != 0) { break; }
}
if (i == n) { return F(0); }
swap(B[i], B[j]);
det = -det;
}
F a_inv = B[j][j].inverse();
for (int i = j + 1; i < n; i++){
F c = -a_inv * B[i][j];
for (int k = 0; k < n; k++) { B[i][k] += c * B[j][k]; }
}
det *= B[j][j];
}
return det;
}
// 第 (i, i) 要素が a[i] である対角行列を生成する.
template<typename F>
Field_Matrix<F> Diagonal_Matrix(vector<F> a) {
int n = a.size();
vector<vector<F>> X(n, vector<F>(n));
for (int i = 0; i < n; i++) { X[i][i] = a[i]; }
return X;
}
#line 6 "verify/yosupo_library_checker/linear_algebra/Power_Matrix.test.cpp"
int main(){
int N; cin >> N;
ll K; cin >> K;
Field_Matrix<modint<998244353>> A(N);
cin >> A;
cout << power(A, K) << endl;
}