This documentation is automatically generated by online-judge-tools/verification-helper
from copy import copy,deepcopy
class Matrix_Error(Exception):
pass
class Matrix():
#入力
def __init__(self,M=[]):
self.ele=M
R=len(M)
if R!=0:
C=len(M[0])
else:
C=0
self.row=R
self.col=C
self.size=(R,C)
#出力
def __str__(self):
T=""
(r,c)=self.size
for i in range(r):
U="["
for j in range(c):
U+=str(self.ele[i][j])+" "
T+=U[:-1]+"]\n"
return "["+T[:-1]+"]"
#+,-
def __pos__(self):
return self
def __neg__(self):
return self.__scale__(-1)
#加法
def __add__(self,other):
A=self
B=other
if A.size!=B.size:
raise Matrix_Error("2つの行列のサイズが異なります.({},{})".format(A.size,B.size))
M=A.ele
N=B.ele
L=[]
for i in range(A.row):
E=[]
for j in range(A.col):
E.append(M[i][j]+N[i][j])
L.append(E)
return Matrix(L)
#減法
def __sub__(self,other):
return self+(-other)
#乗法
def __mul__(self,other):
A=self
B=other
if isinstance(B,Matrix):
R=A.row
C=B.col
if A.col!=B.row:
raise Matrix_Error("左側の列と右側の行が一致しません.({},{})".format(A.size,B.size))
G=A.col
M=A.ele
N=B.ele
E=[]
for i in range(R):
F=[]
for j in range(C):
S=0
for k in range(G):
S+=M[i][k]*N[k][j]
F.append(S)
E.append(F)
return Matrix(E)
elif isinstance(B,int):
return A.__scale__(B)
def __rmul__(self,other):
if isinstance(other,int):
return self*other
def Inverse(self):
from copy import copy
M=self
if M.row!=M.col:
raise Matrix_Error("正方行列ではありません.")
R=M.row
I=[[1*(i==j) for j in range(R)] for i in range(R)]
G=M.Column_Union(Matrix(I))
G=G.Row_Reduce()
A,B=[],[]
for i in range(R):
A.append(copy(G.ele[i][:R]))
B.append(copy(G.ele[i][R:]))
if A==I:
return Matrix(B)
else:
raise Matrix_Error("正則ではありません.")
#スカラー倍
def __scale__(self,r):
M=self.ele
L=[[r*M[i][j] for j in range(self.col)] for i in range(self.row)]
return Matrix(L)
#累乗
def __pow__(self,n):
A=self
if A.row!=A.col:
raise Matrix_Error("正方行列ではありません.")
if n<0:
return (A**(-n)).Inverse()
R=Matrix([[1*(i==j) for j in range(A.row)] for i in range(A.row)])
D=A
while n>0:
if n%2==1:
R*=D
D*=D
n=n>>1
return R
#等号
def __eq__(self,other):
A=self
B=other
if A.size!=B.size:
return False
for i in range(A.row):
for j in range(A.col):
if A.ele[i][j]!=B.ele[i][j]:
return False
return True
#不等号
def __neq__(self,other):
return not(self==other)
#転置
def Transpose(self):
self.col,self.row=self.row,self.col
self.ele=list(map(list,zip(*self.ele)))
#行基本変形
def Row_Reduce(self):
M=self
(R,C)=M.size
T=[]
for i in range(R):
U=[]
for j in range(C):
U.append(M.ele[i][j])
T.append(U)
I=0
for J in range(C):
if T[I][J]==0:
for i in range(I+1,R):
if T[i][J]!=0:
T[i],T[I]=T[I],T[i]
break
if T[I][J]!=0:
u=T[I][J]
for j in range(C):
T[I][j]/=u
for i in range(R):
if i!=I:
v=T[i][J]
for j in range(C):
T[i][j]-=v*T[I][j]
I+=1
if I==R:
break
return Matrix(T)
#列基本変形
def Column_Reduce(self):
M=self
(R,C)=M.size
T=[]
for i in range(R):
U=[]
for j in range(C):
U.append(M.ele[i][j])
T.append(U)
J=0
for I in range(R):
if T[I][J]==0:
for j in range(J+1,C):
if T[I][j]!=0:
for k in range(R):
T[k][j],T[k][J]=T[k][J],T[k][j]
break
if T[I][J]!=0:
u=T[I][J]
for i in range(R):
T[i][J]/=u
for j in range(C):
if j!=J:
v=T[I][j]
for i in range(R):
T[i][j]-=v*T[i][J]
J+=1
if J==C:
break
return Matrix(T)
#行列の階数
def Rank(self,ep=None):
M=self.Row_Reduce()
(R,C)=M.size
T=M.ele
S=0
for i in range(R):
f=False
if ep==None:
for j in range(C):
if T[i][j]!=0:
f=True
else:
for j in range(C):
if abs(T[i][j])>=ep:
f=True
if f:
S+=1
else:
break
return S
#行の結合
def Row_Union(self,other):
return Matrix(self.ele+other.ele)
#列の結合
def Column_Union(self,other):
E=[]
for i in range(self.row):
E.append(self.ele[i]+other.ele[i])
return Matrix(E)
#------------------------------------------------------------
#単位行列
def Identity_Matrix(n):
return Matrix([[1*(i==j) for j in range(n)] for i in range(n)])
#零行列
def Zero_Matrix(r,c=None):
if c==None:
c=r
return Matrix([[0]*c for i in range(r)])
#正方行列?
def Is_Square(M):
return M.row==M.col
#対角行列
def Diagonal_Matrix(*A):
N=len(A)
return Matrix([[A[i]*(i==j) for j in range(N)] for i in range(N)])
#跡
def Trace(M):
if not Is_Square(M):
raise Matrix_Error("正方行列ではありません")
T=0
for i in range(M.col):
T+=M.ele[i][i]
return T
#行列式
def Det(M):
if not Is_Square(M):
raise Matrix_Error("正方行列ではありません")
R=M.row
T=deepcopy(M.ele)
I=0
D=1
for J in range(R):
if T[I][J]==0:
for i in range(I+1,R):
if T[i][J]!=0:
T[i],T[I]=T[I],T[i]
D*=-1
break
if T[I][J]!=0:
u=T[I][J]
for j in range(R):
T[I][j]/=u
D*=u
for i in range(I+1,R):
v=T[i][J]
for j in range(R):
T[i][j]-=v*T[I][j]
I+=1
if I==R:
break
for i in range(R):
D*=T[i][i]
return D
#要素毎に1変数関数を通す.
def Element_Map(M,f):
T=deepcopy(M.ele)
for i in range(M.row):
for j in range(M.col):
T[i][j]=f(T[i][j])
return Matrix(T)
Traceback (most recent call last):
File "/opt/hostedtoolcache/Python/3.13.3/x64/lib/python3.13/site-packages/onlinejudge_verify/documentation/build.py", line 71, in _render_source_code_stat
bundled_code = language.bundle(stat.path, basedir=basedir, options={'include_paths': [basedir]}).decode()
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/hostedtoolcache/Python/3.13.3/x64/lib/python3.13/site-packages/onlinejudge_verify/languages/python.py", line 96, in bundle
raise NotImplementedError
NotImplementedError